
ACENet: Attention Guided Commonsense Reasoning on Hybrid
Knowledge Graph

Chuzhan Hao, Minghui Xie, and Peng Zhang∗

College of Intelligence and Computing, Tianjin University
{chuzhanhao, minghuixie, pzhang}@tju.edu.cn

Abstract

Augmenting pre-trained language models
(PLMs) with knowledge graphs (KGs) has
demonstrated superior performance on com-
monsense reasoning. Given a commonsense
based QA context (question and multiple
choices), existing approaches usually estimate
the plausibility of candidate choices separately
based on their respective retrieved KGs, with-
out considering the interference among differ-
ent choices. In this paper, we propose an At-
tention guided Commonsense rEasoning Net-
work (ACENet)1 to endow the neural network
with the capability of integrating hybrid knowl-
edge. Specifically, our model applies the multi-
layer interaction of answer choices to continu-
ally strengthen correct choice information and
guide the message passing of GNN. In addition,
we also design a mix attention mechanism of
nodes and edges to iteratively select supporting
evidence on hybrid knowledge graph. Experi-
mental results demonstrate the effectiveness of
our proposed model through considerable per-
formance gains across CommonsenseQA and
OpenbookQA datasets.

1 Introduction

Commonsense question answering (CSQA) aims
to answer questions based on the understanding of
context and some background knowledge, which is
the critical gap between the human intelligence and
machine intelligence (Talmor et al., 2019). This ca-
pability of owning prior knowledge and reasoning
is a foundation for communication and interaction
with the world. Therefore, commonsense reason-
ing has become an important research task with
various datasets and models proposed in this field
(Mihaylov et al., 2018; Talmor et al., 2019; Bha-
gavatula et al., 2020; Feng et al., 2020; Yasunaga
et al., 2021; Zhang et al., 2022).

∗Corresponding author.
1https://github.com/HAOChuzhan/ACENet.
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Figure 1: Through the interaction between subgraphs,
the correct choice information is continuously rein-
forced. The subgraph is retrieved from ConceptNet
(Speer et al., 2017). The nodes with letter are the q-c
pairs and connect to other nodes of their respective sub-
graphs. Yellow nodes correspond to entities mentioned
in the question, green nodes correspond to those in the
answer. The other nodes are some associated entities
introduced when extracting the subgraph.

Recently, PLMs (Devlin et al., 2019) have made
significant progress in many question answering
tasks because of its powerful representation capa-
bility. Nevertheless, since commonsense knowl-
edge is rarely stated by natural language (Gun-
ning, 2018), this makes it hard for PLMs to learn
commonsense knowledge from pre-training corpus.
Therefore, many CSQA models augment the PLMs
with various external knowledge sources (e.g.,
structured knowledge ConceptNet (Speer et al.,
2017) and unstructured knowledge Wikipedia).
Compared with unstructured knowledge, structured
knowledge sources have the advantage of being
easier to train and recover explicit evidence, which
leads many researchers to leverage KGs to reason.

A straightforward approach to leverage a KG is
to directly model these relational paths (Santoro
et al., 2017; Lin et al., 2019; Feng et al., 2020).
Although path-based models have a strong inter-
pretability, they are easily affected by the sparsity
and scale of KGs. In addition, graph neural net-
works (GNNs) have achieved promising perfor-
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mance on modeling KGs. Hence, GNNs are widely
used to implicitly capture commonsense knowl-
edge from KGs (Feng et al., 2020; Yan et al., 2021;
Yasunaga et al., 2021; Zhang et al., 2022).

However, these approaches have two main issues.
First, they lack consideration of the interference ef-
fects between choices. In common KG-augmented
models, the probability scores of candidate choices
are calculated based on their respective reasoning
subgraphs or paths separately, which is difficult to
capture the nuance between the correct choice and
distractors in commonsense questions. Second, the
retrieved KGs contain a lot of noisy knowledge,
which will mislead reasoning. QAGNN (Yasunaga
et al., 2021) and JointLK (Sun et al., 2022) usu-
ally filter out the noise knowledge based on node
features, but ignore the different significance of
various edges which contain rich semantics. Wang
et al. (2021) also proves the importance of edge fea-
tures for commonsense reasoning. Therefore, we
should capture the important features from many
aspects (e.g., node, edge, graph and QA context).

In response, we propose ACENet to capture the
nuance of multiple choices by integrating the QA
context and the external commonsense knowledge
graphs. Given a QA context and multiple retrieved
subgraphs of choices, we encode each q-c pair us-
ing PLM. Then the q-c pair is introduced into re-
spective subgraphs as a global node (Ying et al.,
2021). Knowledge is transmitted between sub-
graphs to construct a complete hybrid knowledge
graph for reasoning (see § 3.2). First, we apply
knowledge interaction layer to carry out the infor-
mation interaction between subgraphs and guide
GNN message passing. The layer is stacked to
form a hierarchy that enables multi-layer interac-
tions to recursively reinforce the important choice
information in message passing (see Figure 1). Ad-
ditionally, in order to further aggregate key features
in the reasoning graph, we design a mix attention
mechanism of nodes and edges to iteratively select
supporting evidence based on the global node. Our
model simultaneously leverage the hybrid knowl-
edge of PLM, KGs and different choices to aug-
ment the commonsense reasoning ability. In sum-
mary, our contributions are as follows:

• We propose a knowledge interaction layer
to fuse the knowledge of PLM and different
choices. The multi-layer interactions contin-
uously strengthen correct choice information
in the hybrid knowledge graph.

• We design a mix attention mechanism of
nodes and edges to iteratively select relevant
knowledge over multiple layers of GNN. The
global information of q-c pair is also intro-
duced to enhance evidence selection.

• Experimental results show that ACENet is
superior to current KG-augmented methods.
Through multi-layer interactions and multi-
head attention guidance over hybrid knowl-
edge graph, ACENet exhibits stronger perfor-
mance in complex reasoning, such as solving
questions with negation or more prepositions.

2 Related Work

Graph Neural Networks (GNNs). GNNs have
been widely used to model knowledge graph due
to its strong ability to process graph structured data.
GNNs often follow a neighborhood aggregation
and then message passing scheme (Gilmer et al.,
2017). Recently, a lot of works on CSQA use
GNN to model external KGs. MHGRN (Feng et al.,
2020) transforms single-hop propagation into multi-
hop propagation based on RGCN (Schlichtkrull
et al., 2018). But it does not take into account the
different importance of various nodes. QAGNN
(Yasunaga et al., 2021), GreaseLM (Zhang et al.,
2022), JointLK (Sun et al., 2022) use Graph Atten-
tion Network (GAT) (Velickovic et al., 2018) to rep-
resent knowledge graph. GAT is a commonly used
variant of GNN, which performs attention-based
message passing of node features. According to
GSC (Wang et al., 2021), edge features play an
essential role for commonsense reasoning. Hence,
we design a mix attention mechanism of nodes and
edges based on GAT.
Question Answering with LM+KG. Although
pre-trained language models have achieved great
success in many NLP domains, they do not per-
form well on reasoning questions yet. Therefore,
many works propose LM+KG methods for CSQA,
which use knowledge graph as external knowledge
source for PLMs. JAKET (Yu et al., 2020) aligns
the entities and relations between questions and
knowledge graph and fuses the two kind of rep-
resentations. QAGNN (Yasunaga et al., 2021) in-
troduces a context node as the bridge of PLMs
and knowledge graph. The context node is initial-
ized with the encoding of PLM. GreaseLM (Zhang
et al., 2022) designs an interactive scheme to bidi-
rectionally transfer the information from both the
LM and KG in multiple layers. JointLK (Sun et al.,



2022) calculates the fine-grained attention weight
between each question token and each KG node
to strengthen the joint reasoning ability. They all
focus on enhancing the fusion of two knowledge
source, but lack consideration for the interference
effects of different choices in QA context.

3 Methodology

The diagram of the proposed ACENet is shown in
Figure 2. We assume a setting where each exam-
ple in our data set contains a question q and a set
of answer choices {c1, c2, ..., cn}. We derive the
gold answer from QA context and relevant com-
monsense knowledge. Therefore, we retrieve a
KG G as the source of commonsense knowledge
following prior work (Feng et al., 2020).
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Figure 2: Overall architecture of our proposed ACENet.

3.1 Knowledge Interaction Layer
As shown in Figure 2, given a question and n an-
swer choices, we concatenate them to get n q-c pair
[q; ci] (i ∈ [1, n]) separately. For each q-c pair, they
will be as the inputs to feed through PLM. We use
the “[CLS]” token output from PLM as a summary
vector for each choice.

Although PLMs can learn the general language
representation well (Qiu et al., 2020) for each
choice, it encodes each q-c pair separately, with-
out considering inter-choice interference effects
that are essential for the downstream commonsense
question answering task. Our model begins to use
the representation of each q-c pair to integrate ex-
ternal commonsense knowledge in respective sub-
graphs (see Figure 3). How to initialize the sum-

mary representation of each choice is crucial in
minimizing distracting information being passed to
the downstream supporting evidence selection and
answer prediction tasks.

Therefore, we propose a knowledge interaction
layer (KIL shown in Figure 3) to strengthen the
correct choice information. First we add a multi-
head attention (Vaswani et al., 2017) KIL on top of
the “CLS” tokens. This layer is defined as:

αij = MHA(Qt,Kt,V t) (1)

Ht = η ⊙ H̃t + (1− η)⊙ (αijV
t) (2)

where Q,K,V are interactive representations of all
q-c pairs, which are linear projections from stacked
embeddings of q-c pairs. MHA is the multi-head
attention mechanism. αij is the attention weight
between choices. η = σ(H̃tW + b), σ denotes
the sigmoid activation function, ⊙ represents the
element-wise product, H̃t is the choice representa-
tions before passing through the t-th KIL layer. Our
motivation for adding attention across the q-c pairs
generated from different choices is to encourage
inter-choice interactions. By allowing choice rep-
resentations to interact with each other, the model
is able to train on a better input signal for message
aggregation and passing.

3.2 Hybrid Knowledge Graph
To unify the knowledge of PLM and KGs into the
same reasoning space and take advantage of both,
we introduce the q-c pair into the extracted sub-
graphs Gi. Inspired by Gilmer et al. (2017) and
Yasunaga et al. (2021), in hybrid knowledge graph,
we add the q-c pair as a special node called [CN-
ode] to the Gi, and make connection between [CN-
ode] and each node individually. Each node in the
Gi is divided into four types based on information
sources: q-C node, Question entity node, Answer
entity node and Retrieved entity node, referred to
as T = {C,Q,A,R}.

To further leverage the interference effects of
different choices, the [CNode] node replaces var-
ious graph pooling functions to represent global
information for each subgraph Gi. In the BERT
model (Devlin et al., 2019), there is a similar token,
i.e., [CLS], which is a special token attached at
the beginning of each sequence, to represent the
sequence-level feature on downstream tasks. Thus,
we use the [CNode] node as a medium of inter-
action between subgraphs to achieve information
transmission between internal choices.
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Figure 3: The schematic diagram of Hybrid Knowledge Graph and Knowledge Interaction Layer. The retrieved
nodes have been marked in the graph, where the correspondence between knowledge sources and graph nodes has
been highlighted in the same color. The grey nodes are some associated entities in subgraph.

We initialize the embedding of [CNode] with
the representation of the q-c pair (C0

i =
fKIL(fLM ([q; ci]))), and other nodes on Gi by
their pre-trained entity embeddings prepared by
Feng et al. (2020). In message aggregation and
passing stage, the representation of [CNode] is up-
dated as normal nodes in subgraph and the [CN-
ode] aggregates the information from all nodes.
Inspired by this, we can realize knowledge interac-
tion between different subgraphs Gi and define the
importance of evidence on Gi relying on [CNode]i.
Hence, the global node can serve as a hub to help
node communications and subgraph interactions,
which can make each node more aware of the
non-local information. Combining PLM, KGs and
inter-choice interaction information, we construct
a novel hybrid knowledge graph (see Figure 3).

In the following subsections, we will conduct
GNN message aggregation and passing over hybrid
knowledge graph to score each choice.

3.3 GNN Architecture

Structured data like knowledge graph is much more
efficient in representing commonsense compared
with unstructured text (Xu et al., 2021). Therefore,
we design a mix attention mechanism of nodes
and edges to achieve iterative supporting evidence
selection based on the reasoning graph Gi. Mean-
while, we also add the KIL between the layers of
GNN to enhance global information interaction
among choices (see KIL-GNN in Figure 2).
Edge Encoding. To leverage edge information
in supporting evdience selection and representa-

tion of the whole graph, we should capture the
source/target node types and the edge types. Fol-
lowing Yasunaga et al. (2021), we first obtain the
type embedding ut of each node t, as well as the
edge embedding rst from node s to node t by

rst = fr(est, us, ut) (3)

where us, ut ∈ RT are one-hot embeddings indi-
cating the node types of s and t, est ∈ RR is a
one-hot embedding indicating the relation type of
the edge s → t. Here we add self-loops for all
nodes. fr : R|R|+2|T | → RD is a 2-layer MLP. We
then compute the importance of each edge depend-
ing on [CNode] node in the reasoning process.
Edge-Weighted Message Updating. Wang et al.
(2021) points out that edge encoding is of vital im-
portance for commonsense reasoning. To better
encode effective edge features into message aggre-
gation, each edge’s weight is used to rescale infor-
mation flow on that edge. Intuitively, an edge’s
weight signifies the edge’s relevance for reasoning
about the given task instance. Thus, We also use
the global node [CNode] as global context to com-
pute edge attention weights.

Formally, the update rule of edges at layer ℓ is:

wℓ
(i,j) = f ℓ

w([Cℓ, rℓij ]) (4)

Aℓ
(i,j) =

ew
ℓ

(i,j)∑
(s,t)∈ϵ e

wℓ
(s,t)

(5)

r̃ℓst =
∑

s∈Nt∪{t}

Aℓ
(s,t)r

ℓ
st (6)



where f ℓ
w is a 2-layer MLP. Nt is the set of node

t’s incoming neighbors. We then compute the com-
plete node message from s to t as

h̃ℓs = fm(hℓs, r̃
ℓ
st) (7)

where fm denotes a linear fully connected layer.
h0s is the initial embedding for node s.

The embedding of each node s is updated as h̃ℓs,
which is related to the neighboring edges of node s.
For each edge neighbor, edge weight Aℓ

(i,j) is used
to rescale the edge’s influence on message updating
of node s. Through this soft pruning method, we
integrate the essential edge information into node
features. In the following message aggregation and
passing, the node features on the hybrid subgraph
is strongly contextualized.
Message Aggregation and Passing. For mes-
sage passing, we use the multi-head attention GAT
(Velickovic et al., 2018), which induces node rep-
resentation through iterative message passing be-
tween neighbors on the graph. Specifically, in the
ℓ-th layer of ACENet, we update the representation
of each node t to:

hℓ+1
t =

K

||
k=1

fn

 ∑
s∈Nt∪{t}

αk
sth̃

ℓ
s

 (8)

where || represents concatenation, αk
st are normal-

ized attention coefficients computed by the k-th
attention mechanism(αk), Nt represents the neigh-
borhood of an arbitrary node t, and fn is a 2-layer
MLP. Note that, in this setting, the final returned
output, ht, will consist of the important edge-wise
and node-wise features for each node.

Then, we will use the multi-head attention to
compute attention weight αst from node s to node
t. The query and key vectors can be obtained by

qs = fq(h̃
ℓ
s),kt = fk(h̃

ℓ
t) (9)

where fq and fk are linear transformations. Exper-
imental results also show that the degree feature
of nodes is also crucial, thus we add the degree
feature ds to the local node attention weight, which
is computed as follows:

αst =
exp(γst)∑

t′∈Ns∪{s} exp(γst′ )
· ds, γst = qskt√

D

(10)
Subgraph Information Interaction. In the above
process, we execute message aggregation and pass-
ing of single layer GAT. [CNode] aggregates the

information from other nodes of its subgraph in
the message passing process. In order to further
strengthen correct choice information and percep-
tion of the overall QA context, we add knowledge
interaction layer between each layer of GAT to fuse
the global representation Gi (shown in Figure 2).

3.4 Answer and Explain

We now discuss the learning and interactive pro-
cess of ACENet instantiated for Commonsense QA
tasks. By integrating the knowledge of PLM, the
retrieved KGs and the interaction information of
choices, we compute the probability of ci being the
correct answer as:

p(ci|q, c) ∝ exp(MLP (CLM ,GKIL,G)) (11)

where cLM is the initial embedding of the q-c pair
through PLM, GKIL is the knowledge interaction
representation of q-c pair over different subgraphs,
and G denotes attention-based pooling for last layer
of GNN representation.

The whole model is trained end-to-end jointly
with the PLM (e.g., RoBERTa (Liu et al., 2019))
using the cross entropy loss. Finally, we choose
the choice with the highest probability score as our
answer choice.

4 Experiments

In this section, we conducted experiments over two
commonsense QA benchmarks by answering the
following research questions.

• RQ1: Does ACENet outperform state-of-the-
art baselines?

• RQ2: How do each model module and train-
ing data affect ACENet?

• RQ3: What is the performance of ACENet on
different types of complex questions?

• RQ4: What is the intuitive performance of
ACENet in the process of reasoning?

4.1 Experimental Settings

4.1.1 Datasets
We conduct experiments to evaluate our approach
on two commonsense QA benchmarks: Common-
senseQA and OpenBookQA.
CommonsenseQA (Talmor et al., 2019) is a 5-
way multiple-choice question answering dataset



of 12,102 questions that require background com-
monsense knowledge beyond surface language un-
derstanding. The test set of CommonsenseQA is
not publicly available, and model predictions can
only be evaluated every two weeks via the official
leaderboard. We perform our experiments using
the in-house (IH) data split of Lin et al. (2019) to
compare to baseline methods.
OpenBookQA (Mihaylov et al., 2018) is a 4-way
multiple-choice question answering dataset that
tests elementary scientific knowledge. It contains
5,957 questions along with an open book of sci-
entific facts. We use the official data split. Addi-
tionally, OpenBookQA also provides a collection
of background facts in a textual form. We use
the correspondence between these facts and their
questions, prepared by Clark et al. (2020), as an
additional input to the context module.

4.1.2 Implementation Details
Following previous work (Yasunaga et al., 2021),
we use ConceptNet (Speer et al., 2017), a general-
domain knowledge graph, as our structured knowl-
edge source. Node embeddings are initialized us-
ing the entity embeddings prepared by Feng et al.
(2020), which applies pre-trained LMs to all triples
in ConceptNet and then obtains a pooled represen-
tation for each entity. Given each q-c pair (question
and answer choice), we retrieve the top 200 nodes
and adjacent edge according the node relevance
score following Yasunaga et al. (2021). We set
the dimension (D=200) and number of our GNN
layers (L=5), with dropout rate 0.2 applied to each
layer (Srivastava et al., 2014). The batch size on
CommonsenseQA and OpenBookQA is set from
{64, 128}. We train the model with the RAdam
optimizer (Liu et al., 2020) using two GPUs (Tesla
V100), which takes about 20 hours on average.
We use separate learning rates for the LM module
and the GNN module, which are set from {1e-5,
2e-5,3e-5} and {5e-4, 1e-3, 2e-3}. The above hy-
perparameters are tuned on the development set.

4.1.3 Compared Methods
Although text corpus can provide complementary
knowledge except for knowledge graphs, our model
focuses on exploiting the ability of KG and the joint
reasoning among different choices, LM and KG,
so we choose LM+KG as the comparison methods.

To further investigate the enhancement effects
of KGs on CSQA tasks, we compare with a vanilla
fine-tuned LM, which does not use the KG. We

use RoBERTa-large for CommonsenseQA, and
RoBERTa-large and AristoRoBERTa for Open-
BookQA. In addition, the LM+KG methods share
a similar high-level framework with our methods.
They usually use LM as a text encoder, GNN or RN
as the tool of KG message aggregation and pass-
ing. But the specific used knowledge and the joint
reasoning methods are different: (1) RN (Santoro
et al., 2017), (2) RGCN (Schlichtkrull et al., 2018),
(3) GconAttn (Wang et al., 2019), (4) KagNet (Lin
et al., 2019), (5) MHGRN (Feng et al., 2020), (6)
HGN (Yan et al., 2021),(7) JointLK (Sun et al.,
2022), (8) QAGNN (Yasunaga et al., 2021), (9)
GREASELM (Zhang et al., 2022). (1), (2), (3) are
relation-aware GNNs for KGs, and (4), (5) further
model paths in KGs. (6) generates the missing edge
of subgraphs for reasoning. (7), (8), (9) construct
a joint reasoning graph, which can enhance the in-
teraction of multi-modal knowledge. To be fair, we
use the same LM for all comparison methods and
our model. The key difference between ACENet
and these are that they do not simultaneously con-
sider the interference effects among choices or the
importance of different edge and node features.

4.2 Main Results (RQ1)

The results on CommonsenseQA in-house split
dataset are shown in Table 1. The results on Open-
BookQA test dataset are shown in Table 2. We
repeat each experiment 4 times and report the mean
and standard deviation of accuracy.

Methods IHdev-Acc. (%) IHtest-Acc. (%)

RoBERTa-large (w/o KG) 73.07 (±0.45) 68.69 (±0.56)

+RGCN 72.69 (±0.19) 68.41 (±0.66)
+GconAttn 72.61 (±0.39) 68.59 (±0.96)
+RN 74.57 (±0.91) 69.08 (±0.21)
+KagNet 73.47 (±0.22) 69.01 (±0.76)
+MHGRN 74.45 (±0.10) 71.11 (±0.81)
+HGN - 73.64 (±0.30)
+QA-GNN 76.54 (±0.21) 73.41 (±0.92)
+JointLK 77.88 (±0.25) 74.43 (±0.83)
+GREASELM 78.50 (±0.50) 74.20 (±0.40)

+ACENet (Ours) 78.54 (±0.45) 74.72 (±0.70)

Table 1: Performance comparison on CommonsenseQA
in-house split. We follow the data division method of
Lin et al. (2019) and report the in-house Dev (IHdev)
and Test (IHtest) accuracy.

As show in both datasets, our proposed model
ACENet outperforms previous methods. We ob-
serve consistent improvements over fine-tuned
LMs and existing LM+KG models. The boost over
QA-GNN suggests that ACENet makes a better use



of inter-choice interaction information than exist-
ing LM+KG methods.

Methods RoBERTa-Large AristoRoBERTa

Fine-tuned LMs (w/o KG) 64.80 (±2.37) 78.40 (±1.64)

+RGCN 62.45 (±1.57) 74.60 (±2.53)
+GconAttn 64.75 (±1.48) 71.80 (±1.21)
+RN 65.20 (±1.18) 75.35 (±1.39)
+MHGRN 66.85 (±1.19) 80.60
+JointLK 70.34 (±0.75) 84.92 (±1.07)
+QA-GNN 67.80 (±2.75) 82.77 (±1.56)
+GREASELM - 84.80

+ACENet (Ours) 70.47 (±0.12) 83.40 (±0.14)

Table 2: Test accuracy comparison on OpenBookQA.
Methods with AristoRoBERTa use the textual evidence
by Clark et al. (2020) as an additional input to the QA
context.

4.3 Ablation Studies (RQ2)

We further conduct specific experiments to inves-
tigate the effectiveness of different components in
our model.
Impact of Model Components. We add each
model component individually and report the ac-
curacy on the CommonsenseQA IHdev set in Ta-
ble 3. Adding the edge&node attention mechanism
leads to 0.79% improvement in performance which
shows that some nodes and edges are not conduc-
tive to reasoning. Additionally, when we add the
KIL (GNN) module, the results have a significant
improvement: 76.33% → 77.56% (+1.23%), sug-
gesting that the interaction of different choices is
essential in the process of message passing. Mean-
while, our KIL (PLM) provides a better initial rep-
resentation for the q-c pairs, which is also critical.

Model Dev Acc.

None 76.33
(a) w/ KIL(PLM) 76.67
(b) w/ KIL(GNN) 77.56
(c) w/ Edge&Node Attention 77.12
(d) w/all (final) 78.54

Table 3: Ablation study of our model components
(adding one component each time), using the Common-
senseQA IHdev set.

Impact of Less Labeled Training Data. Table 4
shows the results of our model and baselines when
trained with less training data on CommonsenseQA.
Even in the case of less training data, our model
still achieves the best test accuracy, which suggests
that incorporating the knowledge of external KGs
and multiple choices are helpful for commonsense

reasoning under the low-resource setting.

Methods RoBERTa-Large

60%Train 100%Train

LM Finetuning 65.56 (±0.76) 68.69 (±0.56)

RN 66.16 (±0.28) 70.08 (±0.21)
MHGRN 68.84 (±1.06) 71.11 (±0.81)
HGN 71.10 (±0.11) 73.64 (±0.30)
QA-GNN 70.27 (±0.35) 73.41 (±0.92)
GREASELM 71.08 (±0.52) 74.20 (±0.40)

ACENet (Ours) 71.31 (±0.42) 74.72 (±0.70)

Table 4: Performance change (accuracy in the amounts
of training data on CommonsenseQA IHtest set (same
as Lin et al. (2019)).

Impact of Number of Layers (L) and Heads (H).
To give further insight into the factors for the ca-
pacity of our models, we investigate the impact of
the number of layers and heads in the reasoning
process. The Figure 4 shows the performance of
our model with different numbers of layers and
heads. We can observe that increasing the number
of layers and heads in a certain range improves the
performance of our model. The intuitive explana-
tion is that multiple heads help the model to focus
multiple knowledge rules and at the same time mul-
tiple layers help the model to recursively select the
relevant knowledge rules (Paul and Frank, 2020).
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Figure 4: Performance of ACENet model with different
numbers of Heads and numbers of GNN Layers on
CommonsenseQA IHdev set.

However, performance begins to drop gradually
when H=1, 2 and L>5 or H=4 and L>4. A widely
accepted explanation for the performance degra-
dation with increasing the layers of GNN is the
over-smoothing effect (Chien et al., 2020). There-
fore, we set L=5, H=2 to optimally balance their
utility. Compared with the baselines, our model
achieves better results at different number of layers



Model Negation Term Number of Question Prepositions Number of Question Entities

w/o negation w/ negation 0 1 ≥2 ≤10 entities >10 entities

Number 1107 114 551 464 206 1012 209

QA-GNN 77.78 71.93 77.86 76.51 77.18 76.98 78.47
GREASELM 79.31 74.56 79.31 76.94 80.58 77.57 83.73

ACENet (Ours) 79.49 75.44 79.49 77.59 81.56 78.66 81.34

Table 5: Performance on different types of complex questions. The questions are retrieved from the Common-
senseQA IHdev set.

3 4 5 6 7
GNN Layers

73

74

75

76

77

78

79

80

D
ev

 A
cc

.

QA-GNN
JointLK

MHGRN
Ours

Figure 5: Ablation study on stacked of GNN layers.

(shown in Figure 5).

4.4 Quantitative Analysis (RQ3)
Given these overall performance improvements,
we further analyze whether performance improve-
ments were reflected in questions that required
more complex reasoning. We define the reasoning
complexity of different questions, such as ques-
tions with negation and complex questions with
more prepositions and entities. We compare our
model with the prior better baselines in Table 5.

First, our model exhibits a big boost (+3.51%,
+0.88%) over QA-GNN and GREASELM for the
questions with negation term (e.g., no, not, never,
etc.), suggesting its strength in negative reasoning.
Alternatively, the number of prepositions (e.g., in,
on, of, with, etc.) in a question usually represents
the number of explicit reasoning constraints. Our
results in Table 5 demonstrate that our model gen-
erally outperforms the baselines for all questions
with different number of prepositions. Addition-
ally, the number of the question entities approxi-
mately indicates the scale of the retrieved reasoning
graph. Our model achieves better results (+1.68%,
+1.09%) over QA-GNN and GREASELM for most
of the questions (≤10 entities). At the same time,
our model and the prior best model, GREASELM
perform comparably when aiming at larger scale

retrieved graphs.

4.5 Qualitative Analysis (RQ4)

Figure 6 shows the choice-to-choice attention
weights induced by the KIL layers of our model in
different stages. Our model can strengthen the cor-
rect choice information in multi-layer interactions
using external KGs to get the right answer, while
QA-GNN and GREASELM make the incorrect
predictions. We analyze whether different heads
focus on multiple knowledge rules. In Figure 6, we
observe that two heads focus the different choice-
related knowledge in the message aggregation and
passing process. First, the attention of two heads
represent the key reasoning information in the first
several KILs, but gradually averages out by the
final layer. The head1 primarily focuses on "pay
bills" in the different KILs, which provides strong
evidence of reasoning for the correct answer. In
addition, the attention weights on "buy food" and
"get things" become higher in head2. It also helps
our model to select the relevant knowledge. As
a whole, our model integrates the different knowl-
edge rules mined by each head to realize the correct
prediction.

4.6 Analysis of Experimental Results

To explain why ACENet outperforms other base-
lines, our hypothesis is because of the receptive
field of the subgraph nodes expanded with the in-
teraction of multi-layer Knowledge Interaction Lay-
ers. And through the aggregation and propagation
of multi-layer graph neural networkeach node can
more aware of the non-local information. However,
the work to explain the result of neural networks
requires strenuous efforts. We can think differently
and extend this method into more general settings
in other tasks (e.g., document modeling, reading
comprehension, information extraction, etc.)



Question: August needed  money because he was afraid that he'd be kicked out of his house.  What did he 
need money to do?
A. control people  B. pay bills C. hurt people  D. buy food E. get things(Ours) (GREASELM) (QA-GNN)✅

❌
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Figure 6: Qualitative analysis of ACENet’s inter-choice attention weight changes across multiple knowledge
interaction layers in different heads.

5 Conclusions

In this paper, we propose a multi-head attention
knowledge interaction layer to enhance correct
choice information and capture nuances in differ-
ent choices. Meanwhile, the mix attention mech-
anism of nodes and edges is introduced into mes-
sage passing to iteratively select relevant knowl-
edge in hybrid knowledge graph. Experimental
results on CommonsenseQA and OpenBookQA
demonstrate the superiority of ACENet over other
LM+KG methods and the strong performance in
handling complex questions. In future work, we
plan to further investigate augmenting effects of
knowledge graph for reasoning, and integrate neu-
ral and symbolic reasoning system to achieve dual
system cognitive intelligence.

Limitations

Although our model achieves competitive perfor-
mance in commonsense question answering tasks,
there are some methods and limitations that can be
improved. The limitations of our study are summa-
rized as follows:

1) GNNs incorporates implicit external knowl-
edge in the process of message aggrega-
tion and passing. Therefore, existing KG-
augmented methods are usually not inter-
pretable enough.

2) The optimal number of GNN layers in our
model depends on experimental results. How-
ever, the scale of the knowledge graphs is of-
ten uncertain in real application scenarios. We
can not guarantee that the specific number of

GNN layers will achieve the appropriate per-
formance. How to design the depth-adaptive
GNNs for a balance between efficiency and
effectiveness is a key challenge.

3) At present, our model of using the interaction
between choices to strengthen correct choice
information is only suitable for question an-
swering tasks with the limited scope.
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This paper proposes a general approach to fuse
QA context, language models and external knowl-
edge graphs for commonsense reasoning. We work
within the purview of acceptable privacy practices
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of their intended use. We have also described our
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